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One of the major tasks for theoretical neuroscience is to propose and investigate relations between structure, dy-
namics and functions, as well as between different spatial and temporal scales of neural systems. Wright and Bourke
(W&B) wrestle forcefully with both of these tasks, suggesting how the developing brain through neural oscillations
might enable the emergence of cognitive functions. In addition to bridging different levels of neural organization, the
authors also connect two interesting theories, the Free Energy Principle and the Dynamic Logic theory. This endeavor
relates nicely to Walter Freeman’s mesoscopic neurodynamics [3,12], as well as to John Hopfield’s seminal work
on recurrent neural networks for associative memory [4,5], without explicitly referring to it. I will in the following
discuss some of these links.

For biological systems, it is essential to be stable to short term fluctuations, or common insignificant events, while
it should also be able to react to weak signals and rare important events, as well as adapting to long-term changes. This
stability—flexibility dilemma is of particular concern for neural systems, which presumably have evolved to provide an
efficient interaction with the environment. Flexibility, or adaptability, can be considered at several time scales. At an
evolutionary scale, there is a slow adaptation, which is genetically determined, resulting in the gross structure of the
nervous system and the initial neural organization of the developing brain. However, already in the fetus, the neural
organization of the brain is modified by various epigenetic processes, with molecular, cellular, and network dynamics
acting at much shorter time scales.

W&B describe convincingly how mesoscopic neurodynamics (cf. [3]), in particular synchronous firing and network
oscillations can shape cortical structure, enabling an efficient information processing important for learning and other
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cognitive functions. Their focus is on the growth of columnar structures during embryogenesis, facilitated by the
synchronous firing of neurons, but modifying processes, such as network pruning, input from the developing sensory
organs, various hormones etc are also important to consider. Such influences give the brain a “final” unique structure
that is not possible to predict from the genes alone. Learning that occurs throughout life modifies the neural structures
continuously, and provides adaptation at an intermediate time scale. At even shorter time scales, the neurodynamics
of the brain, partly regulated by neuromodulators (e.g. acetylcholine and serotonin), provide rapid adaptation to fast
changes in the external and internal environment [9].

When approaching the challenging problem of interactions between different spatial and temporal scales, compu-
tational models can prove useful, and sometimes the sole method of investigation. The main problem for the modeler,
however, is to find an appropriate level of system structure, as well as an objective function that can describe system
dynamics. W&B wisely focus on a mesoscopic description, with minimization of free energy as the objective func-
tion. Similarly, Hopfield showed how the minimization of an energy function calculated for recurrent artificial neural
networks with symmetric connection weights could enable storage and recall of memory states [4,5]. However, these
memory states are point attractors, without any oscillatory dynamics, which instead could result from more realistic
network structures, using asymmetric connections and feedback loops of excitatory and inhibitory network nodes
(representing populations of neurons).

We have used this type of modified Hopfield nets to study associative memory in the olfactory cortex [7,8,17],
where learning and recall instead are provided by limit cycle memory states and strange attractor dynamics. Computer
simulations demonstrate how the nonlinear dynamics, including oscillations and even chaos-like behavior, can give
flexibility to the system and increase the efficiency of information processing in associative memory tasks.

W&B emphasize the role of neuronal synchrony for the development of cortical columns and cognitive functions.
(It would be interesting to know if the W&B model could also account for the development of the olfactory cortex,
which is neither columnar, nor topologically preserving.) Our computer simulations of electrical gap junctions demon-
strate the experimental observations [13,6] that such non-synaptic effects may also enhance synchrony, increasing and
stabilizing cortical oscillations, while suppressing high-frequency components [ 1], which may have consequences for
cortical structure and function.

In particular, we have used our computational models to investigate how modification of network structure, for
example due to pruning and sprouting, could affect neural and mental order and disorder [10]. This is following a
hypothesis by Saugstad and others [2,14—16] that mental disorders could be connected to the pruning of the neural
networks of the developing brain. During initial development, many structural elements such as neurons, dendrites,
axons, and synapses are overproduced, enabling the system to fine-tune itself subsequently to account for environ-
mental factors, where competitive processes often govern the refinement of the structure. This structural refinement is
a necessary part of neural self-organization and provides further adaptability. The pruning, which decreases the total
number of synapses, is believed to result in an optimally efficient neural network, as the developing brain integrates
and consolidates early experiences. In the last major step in brain development, some 40% of the neuronal synapses
are eliminated. Both too early and too late shut down of the pruning process could lead to mental disorders. In early
maturers, manic depressive psychosis is more common, while late maturers more often develop schizophrenia [15].

Our simulations show that a high interconnectivity, with extensive long-range excitatory connections, and more
local inhibitory connections, can be extremely robust to network pruning and external or internal fluctuations. An
oscillatory dynamics, resulting from a proper balance between excitation and inhibition, is another factor that provides
both flexibility and stability to the system. In addition, such a dynamics is more energetically advantageous than a
non-oscillatory dynamics. A pruned network is also more efficient in terms of energy usage (less synapses involved)
and network activity levels, and it gives a more accurate learning/recall [10,11].

Although some earlier attempts have been made in linking structure to dynamics and function of neural systems,
W&B have taken a great leap forward with their experimentally motivated model. Their approach is exactly of the
type that is so much needed in order to get a deeper understanding of the complex relations between various spatial
and temporal scales of neural systems. W&B have successfully demonstrated how computational modeling can com-
plement experiments in moving neuroscience forward, in particular with respect to the major challenge of relating
neural structures to cognition and consciousness.
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